
Във връзка с различните разногласия и страхове, които се появиха сред хората като реакция от сериала "Чернобил", БУЛАТОМ и Техническия университет в София проведоха разяснителна пресконференция, на която обясниха защо подобна авария не би могла да се случи в нашата атомна централа в Козлодуй.
На нея стана ясно, че съществуват редица различия между реакторите в "Чернобил" тип РБМК и реакторите в АЕЦ "Козлодуй", тип водно-водни (ВВЕР), които правят невъзможно възникването на подобна авария в България.
По какво двата типа реактори си приличат?
Ядрените реактори в Чернобил и Козлодуй принадлежат към групата на т.нар. реактори на топлинни неутрони, в които се изгаря ураново гориво.
Топлината, която се генерира при деленето на ядрата, се отвежда от топлоносителя, който и за двата типа реактори е обикновена вода. Получената топлина се използва за производството на пара, която задвижва турбогенераторите за производство на ел. енергия.
Какви са обаче различията?
Забавителят на ядрения процес при РБМК реакторите е графит, който е лесно запалим, доколкото при ВВЕР реакторите забавителят е лека вода.
Също така при РБМК реакторите има едноконтурна система, а при ВВЕР е двуконтурна. Това означава, че при ВВЕР реакторите водата, която охлажда реактора е различна от тази, която се изпарява и постъпва в турбината.
При РБМК реакторите липсва цялостна усилена защитна обвивка. Частта над горивните канали не е херметична и сградната конструкция не може да издържи големи вътрешни или външни натоварвания.
При водно-водните реактори има наличие на контейнмънт. Това е усилена херметична защитна обвивка, изградена от предварително напрегнат бетон, която предпазва реакторната инсталация от външни въздействия и може да предотврати изхвърляния в атмосферата.
Развитието на ядрената енергетика
"За първи път енергиен блок е включен атомен блок през 1954 година. В момента говорим за реактори трето поколение. Работи се и по четвърто и пето поколение. Масово в индустрията са реактори второ поколение и се строят предимно трето поколение. Някои казват технологията в Белене е стара, но такова определение не може да се даде. Това, което е старо е принципът, който се използва, за да работят тези блокове", обясни Станислав Георгиев - секретар на БУЛАТОМ.
По думите му, ако трябва да търсим начин за производство на ел. енергия постоянно, освен ядрената енергетика, друго няма. "Практиката, която се оказа най-ефективни са ВВЕР реакторите", обясни той.
Защо не може да се случи подобна авария у нашата централа?
- Леката вода (забавителят при ВВЕР реакторите) позволява изграждане на активна зона с много по-малки размери.
- При РБМК сградата е обикновена и не може да издържи изхвърляне в атмосферата при авария.
- РБМК нямат лимит на мощността и трябва да бъдат ограничени.
- С повишаване температурата в РБМК се повишава и мощността. С повишаване на температурата при ВВЕР се намалява мощността. "Това е основната разлика между двата типа реактори. Именно тази разлика не позволява такава авария при реакторите в България", обясни Георгиев.
- Само средната част на прътите са от борна стомана при РБМК реакторите. Борът поглъща неутроните. Във ВВЕР реакторите целите пръти са от борна стомана.
- Различават се и системите за аварийна защита. При РБМК има две системи за безопасност. В Козлодуй те са 3, в Белене ще бъдат 4. При РБМК реакторите системите за защита им е необходима ел. енергия, иначе не биха работили. Във ВВЕР системите са активни и пасивни. Активните се нуждаят от ел. захранване, но на пасивните не им е необходимо електричество, за да действат.
"Аварията в Чернобил е изцяло човешка грешка. В "Козлодуй" възможност за такава грешка няма. Операторът не може да направи подобни действия", каза Георгиев.
Той обясни, че в Чернобил е трябвало да бъде тествана възможността на турбината на реактора да поддържа системите за сигурност по време на авария, докато дизел-генератора се задейства и произведе достатъчно енергия да задвижи системите за защита.
В резултат на операторска грешка при този процес, и на по-трудното управление на РБМК при ниски мощности, мощността на реактора е намалена до 5%, вместо до желаните 30%. Настъпва отравяне на реактора, което прави връщането на мощност трудно.
Тогава експериментът е трябвало да бъде прекратен...
Но операторите избират мощността да се повиши до желаните 30%. За целта те извеждат извън активната зона всички групи регулиращи органи (което е забранено) и блокират действието на аватийната защита на реактора.
Поради голямата височина - 7 метра и каналната конструкция в активната зона се оформят "микрореактори" с различна мощност. В долната част мощността нараства изключително много в резултат на положителните обратни връзки на реактовността.
Когато разбират за случващото се, операторите задействат ръчно аварийната защита, ори което всички поглъщащи органи се въвеждат в активната зона. Това отнема повече от 10 секунди. От въвеждането на органи, които е забранено да се въвеждат, се получава нежелания ефект - на мястото на водата постъпва графит. Вместо реакторът да се заглуши, неговата мощност се повишава рязко.
Така настъпва парна експлозия и долната част на активната зона на реактора се разрушава. Последващото постъпване на въздух води до възпламеняване на лесногоримия реакторен графит.
Ядрената енергетика все още е много "млада"
"Ние все още се учим как да използваме ядрената енергетика. Природата ни е дала начин как се прави енергия - чрез Слънцето. За 65 години няма как да сме го разбрали все още това. Периодът е твърде кратък. Трябва да сме малко по-търпеливи", каза в заключение секретарят на БУЛАТОМ.
Още от категорията
Виж всички

Създадоха първата българска електрическа яхта

НАСА проучва планета, на която може да има вода
Акценти
Виж всички
МВнР привика руския посланик заради дроновете в Полша







Кошмарни задръствания в Пловдив в първия учебен ден СНИМКИ
